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Abstract
The space of electronic states in a lattice, with fixed occupation and spin
quantum numbers, is identified with the space of holomorphic cross sections
of an irreducible homogeneous line bundle. The Hubbard Hamiltonian, among
others, is represented here by a right-invariant differential operator and the
Schrödinger equation by a linear partial differential equation for which the
associated wavefunction admits a recurrent series expansion.

PACS numbers: 71.10.F, 02.20.-a, 05.50.+q

1. Introduction

The space of states relevant for the description of electrons in a lattice L with l sites proves to
be finite-dimensional. From the general rules of quantum mechanics an electron is represented
by a state in a 2l-dimensional Hilbert space E ⊗ C2, where E contains the spatial part of the
state and C2 describes the spin components. After the identification E ⊗ C2 ∼= E ⊕ E is
taken into account, a set of electrons in that lattice, which is represented by a vector in the
antisymmetric tensor product �(E ⊗ C2), can be equally expressed as a point of

H = �(E ⊕ E) = �(E) ⊗ �(E).

A basis of orthonormal spinless one-particle states {x1, x2, . . . , xl} generates the 4l

localized states xα ⊗ xβ , xα = x
α1
1 x

α2
2 . . . x

αl

l , αa = 0, 1, which form an orthonormal basis
of the Fock space H. An equivalent description, treated in [1, 2], of these electronic states is
furnished by the identification of H with the isomorphic space

H = �(E ⊕ E) ∼= �(E) ⊗ �(E)∗

the complex Clifford algebra C(l) of E, that allows us to describe simultaneously two aspects
of the electronic problem in the lattice: its fermionic and bosonic character. Both aspects are
displayed by two basis states in this Clifford algebra with given values for spins up and down
or the number of pairs and holes in the lattice L, respectively.

In both instances, H as a representation space for the unitary group Ul splits as a sum
of irreducible subspaces labelled by two quantum numbers: the total spin s and the number
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of particles N . There is a Hilbert space decomposition which gives H as a direct sum of
irreducible subspaces HAB with N = l + A − B particles and total spin s = (l − A − B)/2:

H =
⊕

A+B�l

(1 + S+)l−(A+B)(HAB ⊕ HBA).

Thus, the diagonalization problem for the Hubbard Hamiltonian, as for any Hamiltonian
defined by an element in the enveloping algebra of the Lie algebra ul , reduces to a corresponding
series of spectral problems in the highest weight modules HAB indexed by the spin and
occupation numbers s and N . They are irreducible subspaces for the action of the unitary
group Ul , of highest weight λ = (1, . . . , 1, 0, . . . , 0, −1, . . . , −1) with the first A components
equal to 1 and the last B equal to −1. As an abstract representation space for Ul ,
HAB , from now on denoted by Hλ, admits two realizations in the Clifford algebra with
generators {x1, . . . , xl, ∂1, . . . , ∂l} where we denote by ∂a = ∂/∂xa the adjoint operator of
the multiplication operator xa (for details see [1, 2]). The first of these realizations is as a
fermionic space of up and down spins. The dominant vector x1 . . . xA�+x1 . . . xl−B containing
A spins up and l−B spins down is written here in terms of a fixed volume form �+ = ∂1∂2 . . . ∂l .
But Hλ can also be viewed, in the second realization, as a bosonic space with a defined number
of pairs and holes for the basic states in the orbit of the dominant vector x1, . . . , xA∂l+1−B . . . ∂l

with A pairs and B holes. In both cases the action of the S+ spin operator should be considered
to account for the distinct values of the Sz component of the spin in the space H. Adding ones
to each component of λ produces a highest weight for an irreducible subspace of �(E)⊗�(E),
which corresponds to the dominant vector x1, . . . , xA ⊗x1, . . . , xl−B with A spins up and l−B

spins down.
As we said before, the Hamiltonian is an element of the enveloping algebra of the unitary

group which acts in any of its representations. With the notation conventions of [1,2] we write

Hψ = −i[iK, ψ] + V (in1, . . . , inl)ψ (1.1)

for ψ in C(l); the potential V in the simplest version of the model is given by

V (in1, . . . , inl) = U

2

( l∑
a=1

[ina, [ina, ψ] − l

2
ψ

)
(1.2)

but any polynomial in the number operators na can also be considered.
The present formulation for the Hubbard model, based on representation theory for Lie

algebras, readily extends to most of the models of interacting electrons in a lattice. Let us
examine some examples. Choosing now the space �(E ⊕ E) as the representation space for
the system, spin up and down states for a single electron in the lattice are furnished by the
set of anticommuting variables x1, x2, . . . , xl , y1, y2, . . . , yl . In terms of these, the procedure
followed in [1] to translate the Hubbard Hamiltonian into the language of representation theory
applies equally, for instance, to the Hamiltonian [3]

H = −t
∑
〈ij〉,σ

(c+
i,σ cj,σ + c+

j,σ ci,σ )

+V
∑
〈ij〉

(ni − 1)(nj − 1) + J
∑
〈ij〉

(Sz
i Sz

j + 1
2 S+

i Sj + 1
2 S+

j Si)

+X
∑
〈ij〉,σ

(c+
i,σ cj,σ + c+

j,σ ci,σ )(ni,−σ + nj,−σ )

+Y
∑
〈ij〉

(c+
i,1c+

i,−1cj,−1cj,1 + c+
j,1c+

j,−1ci,−1ci,1)

+U
∑

i

(ni,1 − 1
2 )(ni,−1 − 1

2 )
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where more types of interactions are present. One finds in this case the following operator in
the enveloping algebra of gl(l, C):

H = −t
∑
〈ij〉

(ξij + ξji) + V
∑
〈ij〉

(ni − 1)(nj − 1)

− 1
4 J

∑
〈ij〉

[ξij ξji + ξjiξij + (ni − 1)(nj − 1) − 1]

+X
∑
〈ij〉

(ξij ni + niξji + ξjinj + nj ξij )

+ 1
2 Y

∑
〈ij〉

(ξ 2
ij + ξ 2

ji) +
U

2

∑
i

(ni − 1)2.

Here ξij = xi∂/∂xj +yi∂/∂yj is the operator that represents the elementary matrix Eij with one
in place (i, j) and zeros elsewhere; the electron number operators are ni = xi∂/∂xi + yi∂/∂yi .

Analogous reasoning, when applied to the supersymmetric U(2|2) Hamiltonian H 0 =∑
〈jk〉 H 0

jk of [4], with

H 0
jk = (c+

k,1cj,1 + c+
j,1ck,1)(1 − nj,−1 − nk,−1)

+(c+
k,−1cj,−1 + c+

j,−1ck,−1)(1 − nj,1 − nk,1)

+ 1
2 (nj − 1)(nk − 1) + c+

j,1c+
j,−1ck,−1ck,1 + cj,−1cj,1c+

k,1c+
k,−1

− 1
2 (nj,1 − nj,−1)(nk,1 − nk,−1) − c+

j,−1cj,1c+
k,1ck,−1 − c+

j,1cj,−1c+
k,−1ck,1

+(nj,1 − 1
2 )(nj,−1 − 1

2 ) + (nk,1 − 1
2 )(nk,−1 − 1

2 )

leads to the operator

H 0 =
∑
〈jk〉

[(1 − nk)ξjk(1 − nj ) + (1 − nj )ξkj (1 − nk) + 1
2 (ξkj ξjk + ξjkξkj ) + 1

4 nj nk].

Finally, we shall cite the Hamiltonian related to the SO(5) symmetry [5] that unifies
antiferromagnetism and superconductivity. This symmetry was earlier conjectured [6] to be
an approximate symmetry for high-Tc cuprate compounds. The kinetic energy coincides with
that of the SO(4) Hubbard Hamiltonian considered before, but the interaction is now given by
a potential of the form

V s = Us
∑

a

(ns
a)2

with ns
a = 1

2 (na − nd
a), where na still denotes the number operator in site a and nd

a represents
an element of the Lie algebra. The potential energy V s is then manifestly an element of the
enveloping algebra as in previous examples.

The remarkable fact that emerges from these considerations is that, although spin operators
are not in the enveloping algebra and do not represent the action of vectors in gl(l, C), they
appear in the resulting Hamiltonian combined in such a way that they have a meaning in
representation theory. This seems to be intimately related to the symmetry properties for the
Hamiltonians in question that allow us to preserve the irreducible representation subspaces.

No doubt the majority of the exact results for strongly interacting many-fermion systems
are drawn from symmetry considerations which lead to a class of solutions with varying degrees
of completeness and interest. In that direction we can cite the Bethe ansatz for one-dimensional
models in the collected papers of [7], the results of the spin of the ground state [8,9], interactions
with magnetic fields [10], the η Yang’s symmetry [11], the occurrence of ferromagnetic ground
states [12] and the half-filled states and energies for periodic lattices of [2], among others.
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In the present paper we pursue a logical development of the connection of representation
theory with fermionic systems indicated in [1, 2]. This relationship is best understood in the
unitary context in the realm of Borel–Weil theory whose importance as a part of the Bott–Borel–
Weil theorem [13] can scarcely be exaggerated. The theory of functions on homogeneous
manifolds for the action of a Lie group, to which the theorem applies, serves to describe systems
of fermions in a lattice. This description is quite similar to that used in the construction of the
Penrose transform for the solutions of linear field equations [14].

The Borel–Weil theorem provides us with a global definition of the states of the fermionic
system as opposite to the point by point construction through tensor products of simpler states
we saw before. For states with fixed spin and occupation numbers this is achieved through the
space of holomorphic cross sections of an homogeneous bundle for the unitary group where the
Hamiltonian acts as a right-invariant differential operator. In this formulation the Schrödinger
equation becomes a differential equation that describes the system in a way that resembles
the duality between the matrix mechanics of Heisenberg and the wavefunction of Schrödinger
in early quantum mechanics. A more recent parallel to this construction can be found in the
reformulation of quantum field theory in the language of statistical mechanics that allows for
the replacement of noncommuting variables in favour of ordinary functions [15].

Besides this unified approach, the present formulation yields a procedure for solving the
Schrödinger equation. When written in terms of a coordinate system for the group manifold one
obtains a partial differential equation for which the physical solutions admit a series expansion
that leads to recurrent formulae for the coefficients of this wavefunction. The main result of
the present work is thus the formulation of the algebraic system as a recurrent system for the
coefficients of the Taylor series of the wavefunction.

The organization and content of the paper are as follows. In section 2 we associate the
space of holomorphic cross sections of an irreducible homogeneous line bundle to the set of
states with fixed values of the spin and number of particles. This identification follows from
the Borel–Weil theorem in representation theory that we briefly recall. The Hamiltonian acts
on this space by a right-invariant differential operator and the Schrödinger equation results in
a differential equation which can be exactly solved, for example, in a two-point lattice.

Section 3 is devoted to the analysis of the differential equation which is conveniently
written in a local coordinate system adapted to the Hubbard Hamiltonian. There we introduce
the notion of a relative differential which proves to be useful for the treatment of this problem.
Finally, in section 4 we obtain a recurrent description for the terms of the series expansion of
the solutions and compare the approximate and exact solutions for the lattice with two sites.

2. Abstract fermions and the Borel–Weil theorem

Much of our understanding of the Hubbard problem in the present paper follows from the
construction of the irreducible representations of the unitary group in terms of its homogeneous
spaces as given by the Borel–Weil theorem. In this context the Hilbert space of states with fixed
number of electrons and spin will be given by a subspace of L2(Ul) where the Hamiltonian
acts as a right-invariant differential operator.

If T denotes the maximal torus in the unitary group G = Ul given by the subgroup of
diagonal matrices, every homomorphism λ : T → S1, where S1 denotes the circle group,
extends [16] to a holomorphic homomorphism λ : B → C×, where B is the Borel subgroup
of upper triangular matrices containing T . With such homomorphism λ we can define a
homogeneous holomorphic line bundle

Lλ = GC ×B Cλ

on GC/B ∼= G/T , where Lλ is the quotient (GC × Cλ)/B.
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The space of holomorphic cross sections of the bundle Lλ can be identified with the space
of functions on G satisfying

f (g g0) = λ(g−1
0 )f (g) (2.1)

The Borel–Weil theorem [13,14,16] affirms that Lλ has no non-zero holomorphic sections
unless λ is a dominant weight and in that case the space of holomorphic sections 1λ is an
irreducible representation of G with highest weight λ.

As we previously observed, electronic states with fixed quantum numbers are a
representation space for the unitary group G that, in the light of the Borel–Weil theorem,
can be identified with the space of sections 1λ; the holomorphic functions on G satisfying
condition (2.1). The scalar product that makes it a Hilbert space is furnished by the restriction
of the scalar product in L2(G) to 1λ:

(f1, f2) =
∫

G

f1(g)f2(g) dg

where dg denotes the Haar measure on G. The correspondence between both spaces can be
made more explicit as follows. Let ψ1, ψ2 be states in the algebraic space Hλ of the previous
section for which we define the scalar product [1]

(ψ1, ψ2) = tr(ψ+
1 ψ2)

in accordance with the interpretation of H = C(l) as the space of linear transformations of
�(E). We denote by g · vλ the orbit of the dominant vector vλ = xα∂β if λ = α − β as in
section 1. Such an orbit comes simply from the replacement in vλ of the vectors xa and ∂b by
their images for the action of G on E and E∗, respectively. Let ψ be a state in H for which
we define the function on G

f (g) = (g · vλ, ψ) (2.2)

which satisfies condition (2.2) and hence belongs to 1λ. This gives the desired connection.
Looking now at the scalar products one has the relation [17]∫

G

(g · v1, ψ1)(ψ2, g · v2) dg = 1

dim Hλ

(v1, v2)(ψ2, ψ1)

that, for v1 = v2 = vλ and fi(g) = (g · vλ, ψi), i = 1, 2, is∫
G

f1(g)f2(g) dg = ‖vλ‖2

dim Hλ

(ψ1, ψ2)

which is the formula we were looking for. Besides the correspondence between states and
sections of a bundle we should determine the action of the elements of the enveloping algebra
in that bundle. They are conveniently described in terms of right-invariant differential operators
acting on functions over the group G [18]. So for the kinetic energy operator one finds the
expression

(Tf )(g) = i
d

dt

∣∣∣∣
t=0

f (eiKtg) (2.3)

that describes the action of the vector field associated with the flow in G given by the one-
parameter subgroup {exp iKt} and which corresponds to the action in Hλ through formula (1.1),
but notice that there K represents an action in C(l). The complete Hubbard Hamiltonian is
now

(Hf )(g) =
[

i
d

dt
+ V

(
i

∂

∂θ1
, . . . , i

∂

∂θl

)]
0

f (eiKt+i(θ,n)g) (2.4)
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where the subscript 0 means evaluation at t = θ1 = · · · = θl = 0 and we have set
(θ, n) = θ1n1 + · · · + θlnl in terms of the elementary diagonal matrices na . It is easy to
see that the usual Hubbard Hamiltonian defined by the potential energy (1.2) is given by the
Schrödinger operator(

i
∂

∂t
− U

2
5θ

)
0

f (eiKt+i(θ,n)g)

neglecting the constant term.
An explicit solution of the associated Schrödinger differential equation can be obtained in

the simplest cases. To see that, consider, for instance, the problem for a lattice with two sites.
Let us parametrize the element g in U2 by the angular coordinates θ, s, φ, in terms of which
we write

g = hθ uskφ (2.5)

where

hθ =
(

eiθ1 0
0 eiθ2

)
us = ei s

2 σ1 =
(

cos s
2 i sin s

2
i sin s

2 cos s
2

)

and

kφ = ei φ

2 σ3 =
(

ei φ

2 0
0 e−i φ

2

)
.

Let F (θ, s, φ) = f (hθ uskφ) be the local expression for f in these coordinates and let the
kinetic energy be defined by the hopping matrix

K =
(

0 1
1 0

)

for which we obtain the operator

i
d

dt

∣∣∣∣
t=0

f (eiKtg) = i(θ̇ , ∇θ F ) + iṡ
∂F

∂s
+ iφ̇

∂F

∂φ
.

To compute the derivatives of the coordinates at t = 0, θ̇ , ṡ and φ̇, we consider the curve m(t)

in G:

m(t) = eiKtg = hθ(t)us(t)kφ(t)

where we take the right derivative

dm

dt
m−1

at t = 0 to get the formula

iK =
(

iθ̇1 0
0 iθ̇2

)
+

ṡ

2

(
0 iei(θ1−θ2)

ie−i(θ1−θ2) 0

)
+

φ̇

2

(
i cos s ei(θ1−θ2) sin s

−e−i(θ1−θ2) sin s i cos s

)

from which we deduce the expression for the kinetic energy

i
d

dt

∣∣∣∣
t=0

f (eiKtg) = i sin(θ1 − θ2) cot s

(
∂F

∂θ2
− ∂F

∂θ1

)
+ 2i cos(θ1 − θ2)

∂F

∂s

+2i
sin(θ1 − θ2)

sin s

∂F

∂φ
.

With our choice of coordinates the potential energy is simply

−U

2
(5ξ + 1) |ξ=0 f (ei(ξ,n)g) = −U

2
(5θ + 1)F (θ, s, φ)
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and the Schrödinger equation is now

−U

2
5θ F + i sin(θ1 − θ2) cot s

(
∂F

∂θ2
− ∂F

∂θ1

)

+2i cos(θ1 − θ2)
∂F

∂s
+ 2i

sin(θ1 − θ2)

sin s

∂F

∂φ
=

(
E +

U

2

)
F.

The highest weight λ = (1, −1) defines the subspace of half-occupied states with spin
zero which, in accordance with the properties stated for F , are described by a function of the
following type:

F (θ, s, φ) = e−iφ[a(s)ei(θ1−θ2) + b(s)e−i(θ1−θ2) + c(s)].

The system of first-order ordinary differential equations for the functions a, b, c determines
the energy levels and states, one finds at E = U/2 the solution

F (θ, s, φ) = e−iφ(ei(θ1−θ2) sin2 s/2 + e−i(θ1−θ2) cos2 s/2) (2.6)

and for the levels E2 = 4 + U 2/4 the corresponding solution is now

F (θ, s, φ) = e−iφ

[
ei(θ1−θ2) sin2 s/2 − e−i(θ1−θ2) cos2 s/2 +

i

2

(
E − U

2

)
sin s

]
(2.7)

which show in each case the pair and holes content of the states prescribed by the weight µ

appearing in exp −i(µ, θ). The weight µ = (1, −1) indicates a pair in site 1 and a hole in
site 2, the same for µ = (−1, 1) but exchanging pairs and holes, and µ = (0, 0) represents a
state without pairs and holes.

3. The differential equation

In general, for a lattice with arbitrary many points, there is not a simple explicit expression
for the differential operator associated with the Hamiltonian. We shall see, however, that it
can be written in a form that will prove useful for computations. Let g be in Ul and define the
right-invariant differential form

ω = dg g−1

with values in the Lie algebra ul . The coefficients of ω in a given basis of ul span the cotangent
bundle of Ul at the identity. The usual realization of ul by the space of skew-Hermitian
complex l × l matrices, with the trace scalar product defined by (A, B) = tr(A+B), allows
one to represent the differential of a function f (g) in the form

df = (ω, <). (3.1)

For a fixed coordinate system of Ul at the identity, the relative differential < of f is a matrix
given in terms of the partial derivatives of f with respect to the chosen coordinates. Let us
prove that, for a section f in 1λ, the corresponding < belongs to the space 1λ ⊗ gll(C). This
can be seen by considering the representation (2.2) for f from which the differential is

df (g) = ([L(ω), vλ(g)], ψ)C(l)

where L(ω) represents the form ω and vλ(g) = g · vλ is the orbit of vλ. Due to the invariance
of the scalar product we can write

df (g) = (L(ω), [v+
λ(g), ψ])C(l)

from which, after we identify gll(C) with the subspace C{xa
∂

∂xb
} ⊂ C(l), one deduces that

< corresponds to the gll component of [v+
λ(g), ψ], the subspace in C(l) that contains L(ω).
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Such a matrix < has the announced properties because the vector function v+
λ(g) transforms

under a right translation by a diagonal element g0 of the maximal torus T according to

v+
λ(gg0) = λ(g−1

0 )v+
λ(g).

The matrix < allows one to write the kinetic energy in very simple terms. Since the kinetic
energy operator (2.3) is given by the vector field ∂K in Ul issued from the vector iK at the
identity, we deduce from the contraction of equation (3.1) with ∂K the formula

(Tf )(g) = i(iK, <(g)) = (K, <(g))

which implies the identification of the kinetic energy with the component of <(g) on K .
As before, we let θ = (θ1, . . . , θl) be the angular coordinates of the torus T and denote

by Z a skew-Hermitian matrix, Z + Z+ = 0, with zero diagonal part. The local coordinates
(θ, Z) allow one to write g = exp iθ exp Z and with this choice of coordinates the potential
energy becomes

V

(
i

∂

∂ξ1
, . . . , i

∂

∂ξl

) ∣∣∣∣
ξ=0

f (eiξ eiθ eZ) = V

(
i

∂

∂θ1
, . . . , i

∂

∂θl

)
f (eiθ eZ)

since exp iξ exp iθ = exp i(ξ + θ).
The preceding formulae imply the equivalence of the Schrödinger equation (H −E)f = 0

for the Hamiltonian (2.4) with the pair of equations

dF = (ω, <) (3.2)

(K, <) + V F = EF. (3.3)

The differential form ω in the present coordinates adopts the expression

ω = dg g−1 = i dθ + eiθ (deZe−Z)e−iθ

and F (θ, Z) = f (eiθ eZ).
The meaning of these equations is that they define < through (3.2) to give a differential

equation for F upon substitution of < in (3.3). Although it will not be used in what follows,
it seems of interest to see how this can be done. So we let {K/‖K‖, Qγ } be an orthonormal
basis of ul and write (3.2) in the form

dF = 1

‖K‖2
(ω, K)(K, <) +

∑
γ

(ω, Qγ )(Qγ , <)

as follows from the representation of ω in the fixed basis. Substitution of (K, <) as given by
(3.3) in the expression above results in

dF = 1

‖K‖2
(ω, K)[E − V ]F +

∑
γ

(ω, Qγ )(Qγ , <)

from which we can eliminate < if we take the product of this equation with the (l2 − 1)

differential form
∏

(ω, Qγ ) = χ ′. This is the case since each coefficient containing < in the
expression for dF vanishes after multiplication with χ ′ because all the 1-forms (ω, Qγ ) are
present in χ ′. Denote by χ = ‖K‖−1χ ′ ∧ (ω, K) the invariant volume element for Ul . Then
we have the equation for F :

χ ′ ∧ dF = 1

‖K‖χ [E − V ]F.

But this form of the Schrödinger equation appears to be more involved than the system (3.2)
and (3.3) where the restrictions on F , as an element of 1λ, are explicitly taken into account
through the relation (3.2).



Representation theory for the Hubbard model 9375

4. Recurrence relations for the wavefunction

The analysis of the Schrödinger equation in the form (3.2) and (3.3) permits us to derive some
conclusions about the state F . Because all objects F, <, ω appearing in these equations are
analytic they admit a Taylor expansion in the local coordinates Z around Z = 0. This is the
case for the differential form ω defined as

ω = dg g−1 = i dθ + ζ θ

where we denote ζ θ = eiθ ζe−iθ and

ζ = deZ e−Z = dZ +
1

2
[Z, dZ] +

1

3!
[Z, Z, dZ] + · · · .

We thus have a series

ω = ω0 + ω1 + · · ·
with ωm of degree m in the coordinates Z:

ω0 = i dθ ω1 = eiθ dZe−iθ , . . . .

For F and < we have analogous expansions

F (θ, Z) = F0(θ, Z) + F1(θ, Z) + · · ·
<(θ, Z) = <0(θ, Z) + <1(θ, Z) + · · ·

where Fm(θ, Z), <m(θ, Z) are defined by homogeneous polynomials, in the Z coordinates,
of degree m. Both F and < satisfy the functional relations (2.1)

F (θ, Z) = e−i(λ,θ)F (0, Zθ ) <(θ, Z) = e−i(λ,θ)<(0, Zθ )

as local representatives of a section and a matrix of sections, respectively, of the line bundle
Lλ, due to the fact that eiθ belongs to T . Thus we see that F and < are determined by
their dependence on Z. To proceed further, we substitute the analytic objects appearing in
equations (3.2) and (3.3) by their foregoing expansions to obtain the recurrence relations for
the homogeneous parts of F . In doing so one gets the set of conditions

dFm = (ω0, <m) + (ω1, <m−1) + · · · + (ωm, <0) (4.1)

(K, <m) = (E − V )Fm (4.2)

for m = 0, 1, 2, . . .. Since ω0 is diagonal while ω1 is nondiagonal, we deduce from (4.1)
at each step m the expression for the diagonal part of <m and the nondiagonal components
of <m−1 in terms of Fm and the preceding <0, <1, . . . , <m−2. Assume we have computed
<0, <1, . . . , <m−1; then, setting together diagonal and nondiagonal parts we obtain for <m

the recurrent formula

<m = i∇θ Fm + eiθ∇ZFm+1e−iθ + 1
2 [Zθ , <m−1]′

− 1

3!
[Zθ , Zθ , <m−2]′ + · · · +

(−1)m+1

(m + 1)!
[Zθ , . . . , Zθ , <0]′. (4.3)

In this expression [Zθ , Zθ , <m−2]′, for instance, means the nondiagonal part of the matrix
commutator

(ad Zθ )2<m−2 = [Zθ , [Zθ , <m−2]]

with Zθ = eiθ Ze−iθ . The notation ∇θ Fm, ∇ZFm+1 is used to represent the differential dFm in
terms of the scalar product of these symbols with the matrix differentials of

θ = θ1n1 + · · · + θlnl
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and

Z =
∑
α>0

(zαeα − zαfα)

in each case. Accordingly we write

dF = (dθ, ∇θ F ) + (dZ, ∇ZF )

from which we deduce the relations

∇θ F =
∑

a

na

∂F

∂θa

∇ZF =
∑

α

eα

∂F

∂zα

− fα

∂F

∂zα

.

As usual, {eα, fα} represent the root vectors corresponding to the diagonal subalgebra with
positive roots α. After substitution of <m, as given by (4.3) in (4.2), we get the desired
recurrence formula for the homogeneous components Fm of the wavefunction F :

(K−θ , ∇Z)Fm+1 = (E − V )Fm − 1

2
(K, [Zθ , <m−1]) + · · · +

(−1)m

(m + 1)!
(K, [Zθ , . . . , Zθ , <0])

(4.4)

where <0, <1, . . . , <m−1 are expressed in terms of F0, F1, . . . , Fm as prescribed by
equation (4.3). Thus, formulae (4.3) and (4.4) give the desired recurrent relations for the
analytic objects. Next, let us examine what these equations become when the functional
relations in the space 1λ are taken into account.

The dependence in θ of the wavefunction F and the matrix < is determined by the
Fourier expansions in the space of sections 1λ according to the formulae prescribed by the
representation (2.2). One has

F (θ, Z) =
∑
µ�λ

Fµ(Z)e−i(µ,θ)

<(θ, Z) =
∑
µ�λ

<µ(Z)e−i(µ,θ)

where the summation extends over all admissible weights µ for which λ−µ is a sum of positive
roots. This set is the weight system Dλ with highest weight λ [16]. Each Fourier component
Fµ of the wavefunction F is proportional to the probability amplitude of having a number of
pairs and holes in such a state fixed by the weight µ. The recurrence formulae (4.4) for F are
further strengthened upon substitution of the previous Fourier expansions and they become

(K, <mµ) = [E − V (µ)]Fmµ (4.5)

besides the expressions for <mµ that follow from (4.3). To get a more detailed description of
these equations we shall proceed as follows.

At m = 0 one has

F0 = F0λe−i(λ,θ)

with F0λ = const as follows, for instance, from (2.2). For <0 we deduce from equation (4.3)
the formula

<0 = i∇θ F0 + eiθ∇ZF1e−iθ

= F0λe−i(λ,θ)nλ +
∑
α,µ

(
eα

∂F1µ

∂zα

e−i(µ−α,θ) − fα

∂F1µ

∂zα

e−i(µ+α,θ)

)

where nλ = λ1n1 + λ2n2 + · · · + λlnl is the diagonal matrix defined by the weight λ. Because
the matrix <0 is of the form

<0 = <0λe−i(λ,θ)
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we get, by direct substitution in the previous formula, the relation

<0λ = F0λnλ −
∑

λ−α∈Dλ

fα

∂F1λ−α

∂zα

where the sum extends to those positive roots α for which λ − α is a weight. Besides the
formula for <0 one gets for F1 the set of conditions

∂F1/∂zα = 0 (4.6)

for every α, and

∂F1/∂zα = 0 (4.7)

if λ − α /∈ Dλ as follows from the definitions of <0 and F1.
At degree zero the Schrödinger equation (4.5) is

(K, <0λ) = [E − V (λ)]F0λ

that, after substitution of <0λ, results in a condition for the coefficients ∂F1λ−α/∂zα of the
linear function F1:

−
∑

λ−α∈Dλ

kα

∂F1λ−α

∂zα

= [E − V (λ)]F0λ. (4.8)

Along these lines one should continue with the case m = 1 for which the differential (4.3)
takes the form

<1 = i∇θ F1 + eiθ∇ZF2e−iθ + 1
2 [Zθ , <0]′ (4.9)

with the corresponding Fourier expansion given by∑
µ

<1µe−i(µ,θ) =
∑

µ

F1µe−i(µ,θ)nµ

+
∑
α,ν

(
eα

∂F2ν

∂zα

e−i(ν−α,θ) − fα

∂F2ν

∂zα

e−i(ν+α,θ)

)

+ 1
2

∑
α

zαe−i(λ−α,θ)[eα, <0λ]′

− 1
2

∑
α

zαe−i(λ+α,θ)[fα, <0λ]′ (4.10)

where nµ is the diagonal matrix defined by the weight µ and the sum over µ goes through Dλ

while α ∈ 5+, the system of positive roots for the Lie algebra.
The general procedure to analyse this type of expression, that one encounters at all orders

m, is the following. As one easily realizes, each of the matrix elements (eα, <), (fα, <)

belongs to the space of sections 1λ and, at order m, satisfies the conditions previously found
for Fm as a homogeneous part of the section given by F . These conditions will imply new
relations for Fm+1 and simultaneously allow for the construction of <m. So, when applied to
<1, we deduce from (4.10), considering the eα component of this equation and equations (4.6)
and (4.7), that

∂2F2ν

∂zα∂zβ

= 0 (4.11)

and the expression

∂

∂zβ

(eα, <1λ−β) = −([eα, fβ], <0λ) (4.12)

which one deduces after some computation.
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Analogous considerations for the fα component give the formulae

∂2F2ν

∂zα∂zβ

= 1

2
δν,λ−(α−β)([fα, eβ], <0λ) (4.13)

and

∂

∂zβ

(fα, <1λ−β) = −∂2F2λ−α−β

∂zα∂zβ

− 1

2
([fα, fβ], <0λ). (4.14)

Notice that from (4.9) one finds that the diagonal part of <1 is i∇θ F1. Combining this
diagonal part with (4.12) and (4.14) one obtains <1. In addition there appear in (4.14) a number
of restrictions on F2 inherited from the structure of the weight system.

The Schrödinger equation (4.5) at m = 1 becomes
∑

β

kβ

∂F2λ−(α−β)

∂zβ

−
∑

β

kβ

∂F2λ−α−β

∂zβ

+
1

2
zα(K, [eα, <0λ]) = [E − V (λ − α)]F1λ−α

for each α. This is nothing other than an algebraic system on the coefficients of F2 which are
located in the zαzβ terms. Taking into account equation (4.13) one finds for these coefficients
∂2F2λ−α−β/∂zα∂zβ the set of conditions

∑
β

kβ

∂2F2λ−α−β

∂zα∂zβ

+
∑

β

kβ

2
([fα, fβ], fα+β)

∂F1λ−α−β

∂zα+β

= −
∑

β

kβ([fα, eβ], fα−β)
∂F1λ−(α−β)

∂zα−β

−[E − V (λ − α)]
∂F1λ−α

∂zα

+ kα([fα, eα], nλ)F0λ.

The same arguments yield for the terms of higher degree m = 3, 4, . . . , M the equations
for the coefficients of the polynomials Fmµ(Z). If M is the highest degree for the terms
containing the variables zα alone, the equations for the spectrum are brought by the conditions

∂M+1FM+1/∂zα1∂zα2 . . . ∂zαM+1 = 0

in the Schrödinger equation at level M . We have thus obtained a graded structure for the
system of equations determining the states and spectrum of the Hubbard Hamiltonian. Even
the trivial case l = 3, λ = (1, 0, 0), essentially the diagonalization of the matrix K , shows the
main features of the preceding equations.

We shall illustrate the foregoing construction in the particular case l = 2 with λ = (1, −1)

already considered in section 2. In that case the set of weights is Dλ = {0, ±λ} and the matrix
Z = ze−zf . The kinetic energy is defined by K = e+f so that one finds for F , in accordance
with the previous formulae, the expression

F (θ, Z) = (1 − |z|2)e−i(θ1−θ2) − [E − V (λ)]z

−(1 − 1
2 [E − V (0)][E − V (λ)])z2ei(θ1−θ2) + · · · (4.15)

neglecting higher-order terms and setting F0λ = 1. For the present case this approximation
is enough to completely determine the state. The corresponding energy levels arise upon
consideration of cubic terms in Z, from which one encounters the equation

[E − V (λ)] + [E − V (−λ)]{1 − 1
2 [E − V (0)][E − V (λ)]} = 0. (4.16)

It is now time to compare formulae (4.15) and (4.16) with the results of section 2. We
first identify the old coordinates (θ, s, φ) with those of (4.15), which we now denote by (θ̃ , Z),



Representation theory for the Hubbard model 9379

writing for g in (2.5)

g = hθ uskφ

= (hθ kφ)k−1
φ uskφ

= hθ̃ exp i
s

2

(
0 e−iφ

eiφ 0

)

from which we deduce

θ̃1 = i(θ1 + φ/2) θ̃2 = i(θ2 − φ/2)

with

z = i
s

2
e−iφ

and the identification f (g) = F (θ, s, φ) = F̃ (θ̃ , Z), letting F̃ denote the expression for the
wavefunction in (4.15). The potential energy for the present case is

V (λ) = U

2
(‖λ‖2 − 1) = U

2

from which we get upon substitution in (4.16)(
E − U

2

) (
E2 − U 2

4
− 4

)
= 0

in full agreement with the results of section 2 for the energy levels.
At E = U/2 we obtain from (2.6) the formula for the second-order approximation in s:

F (θ, s, φ) = e−iφ

{
s2

4
ei(θ1−θ2) +

(
1 − s2

4

)
e−i(θ1−θ2) + · · ·

}

whilst for the levels E2 = U 2

4 + 4 in (2.7) we have in the same approximation

F (θ, s, φ) = e−iφ

{
s2

4
ei(θ1−θ2) +

i

2

(
E − U

2

)
s −

(
1 − s2

4

)
e−i(θ1−θ2) + · · ·

}

in accordance with formula (4.15).
To conclude, we observe that solution (4.15) is greatly simplified when E = V (λ), which

represents an eigenvalue in (4.16) provided that V (λ) = V (−λ). Generalization of this type
of symmetry argument would be of interest in connection with the problem of solving the
differential equation in concrete situations.
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